Abstract
Purpose
Oxidative stress is closely related to cognitive impairment, and the antioxidant system may be a potential therapeutic target to preserve cognitive function in older adults. Selenium plays an important antioxidant role through selenoproteins. This controlled trial aimed to investigate the antioxidant and cognitive effects of the consumption of Brazil nuts, the best selenium food source.
Methods
We enrolled 31 older adults with mild cognitive impairment (MCI) who were randomly assigned to ingestion of Brazil nuts or to the control group. Participants of the treatment group consumed one Brazil nut daily (estimated 288.75 µg/day) for 6 months. Blood selenium concentrations, erythrocyte glutathione peroxidase (GPx) activity, oxygen radical absorbance capacity, and malondialdehyde were evaluated. Cognitive functions were assessed with the CERAD neuropsychological battery.
Results
Eleven participants of the treated group and nine of the control group completed the trial. The mean age of the participants was 77.7 (±5.3) years, 70 % of whom were female. We observed increased selenium levels after the intervention, whereas the control group presented no change. Among the parameters related to the antioxidant system, only erythrocyte GPx activity change was significantly different between the groups (p = 0.006). After 6 months, improvements in verbal fluency (p = 0.007) and constructional praxis (p = 0.031) were significantly greater on the supplemented group when compared with the control group.
Conclusion
Our results suggest that the intake of Brazil nut restores selenium deficiency and provides preliminary evidence that Brazil nut consumption can have positive effects on some cognitive functions of older adults with MCI.

Similar content being viewed by others
Change history
05 January 2021
A Correction to this paper has been published: https://doi.org/10.1007/s00394-020-02443-6
References
Petersen RC, Smith GE, Waring SC et al (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308
Lopez OL, Jagust WJ, DeKosky ST et al (2003) Prevalence and classification of mild cognitive impairment in the Cardiovascular Health Study Cognition Study: part 1. Arch Neurol 60(10):1385–1389
Mitchell AJ, Shiri-Feshki M (2009) Rate of progression of mild cognitive impairment to dementia- meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand 119(4):252–265
Zhu X, Lee H, Perry G et al (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 1772(4):494–502
Mariani E, Polidori MC, Cherubini A et al (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827(1):65–75
Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62(5):540–555
Cui K, Luo X, Xu K et al (2004) Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry 28(5):771–799
Chauhan V, Chauhan A (2006) Oxidative stress in Alzheimer’s disease. Pathophysiology 13(3):195–208
Steinbrenner H, Sies H (2013) Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys 536(2):152–157
Cardoso BR, Ong T, Jacob-Filho W et al (2010) Nutritional status of selenium in Alzheimer’s disease patients. Br J Nutr 103:803–806
Thomson CD, Chisholm A, McLachlan SK et al (2008) Brazil nuts: an effective way to improve selenium status. Am J Clin Nutr 87:379–384
Cominetti C, de Bortoli MC, Garrido AB Jr et al (2012) Brazilian nut consumption improves selenium status and glutathione peroxidase activity and reduces atherogenic risk in obese women. Nutr Res 32:403–407
Berr C, Balansard B, Arnaud J et al (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. Etude du Vieillissement Artériel. J Am Geriatr Soc 48(10):1285–1291
Gao S, Jin Y, Hall KS et al (2007) selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol 165(8):955–965
Leszek J, Inglot AD, Janusz M et al (1999) Colostrinin®: a proline-rich polypeptide (PRP) complex isolated from ovine colostrum for treatment of Alzheimer’s disease. A double-blind, placebo-controlled study. Arch Immunol Ther Exp (Warsz) 47:377–384
Scheltens P, Kamphuis PJ, Verhey FR et al (2010) Efficacy of a medical food in mild Alzheimer’s disease: a randomized, controlled trial. Alzheimers Dement 6:1–10
Kesse-Guyot E, Fezeu L, Jeandel C et al (2011) French adults’ cognitive performance after daily supplementation with antioxidant vitamins and minerals at nutritional doses: a post hoc analysis of the Supplementation in Vitamins and Mineral Antioxidants (SU.VI.MAX) trial. Am J Clin Nutr 94:892–899
Winblad B, Palmer K, Kivipelto M et al (2004) Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256(3):240–246
Welsh KA, Butters N, Mohs RC et al (1994) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology 44(4):609–614
Bertolucci PHF, Okamoto IH, Brucki SMD et al (2001) Applicability of the CERAD neuropsychological battery to Brazilian elderly. Arq Neuropsiquiatr 59(3-A):532–536
Morris JC (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43:2412–2414
Association of Official Analytical Chemists (AOAC) (1990) Official methods of analysis. AOAC, Washington
Hao D, Xie G, Zhang Y et al (1996) Determination of serum selenium by hydride generation flame atomic absorption spectrometry. Talanta 43:595–600
Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502
Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte gluthatione peroxidase. J Lab Clin Med 70:158–169
Prior RL, Hoang H, Liwei G et al (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. Agric Food Chem 51:3273–3279
Hong YL, Yeh SL, Chang CY et al (2000) Total plasma malondialdehyde levels in 16 Taiwanese college students determined by various thiobarbituric acid tests and an improved high-performance liquid chromatography-based method. Clin Biochem 33:619–625
Chandler MJ, Lacritz LH, Hynan LS et al (2005) A total score for the CERAD neuropsychological battery. Neurology 65(1):102–106
Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale
Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391–402
Planas M, Conde M, Audivert S et al (2004) Micronutrient supplementation in mild Alzheimer disease patients. Clin Nutr 23:265–272
Arnaud J, Akbaralyc TN, Hininger I et al (2007) Factors associated with longitudinal plasma selenium decline in the elderly: the EVA Study. J Nutr Biochem 18:482–487
Letsiou S, Nomikos T, Panagiotakos D et al (2009) Serum total selenium status in Greek adults and its relation to age. The ATTICA study cohort. Biol Trace Elem Res 128:8–17
De la Monte SM, Tong M, Lester-Coll N et al (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10:89–109
Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231. doi:10.1016/j.bbadis.2013.09.010
Ceballos-Picot I, Merad-Boudia M, Nicole A et al (1996) Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer’s type-place of the extracellular glutathione peroxidase. Free Radic Biol Med 20:579–587
Knorpp T, Robinson SR, Crack PJ et al (2006) Glutathione peroxidase-1 contributes to the protection of glutamine synthetase in astrocytes during oxidative stress. J Neural Transm 113:1145–1155
Castaño A, Ayala A, Rodríguez-Gómez JA et al (1997) Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochem Int 30:549–555
Bellinger FP, He QP, Bellinger MT et al (2008) Association of selenoprotein P with Alzheimer’s pathology in human cortex. J Alzheimers Dis 15(3):465–472
Takemoto AS, Berry MJ, Bellinger FP (2010) Role of selenoprotein P in Alzheimer’s disease. Ethn Dis 20(Suppl 1):92–95
Garcia T, Esparza JL, Nogues MR et al (2009) Oxidative stress status and RNA expression in hippocampus of an animal model of Alzheimer’s disease after chronic exposure to aluminum. Hippocampus 20:218–225
Zhang S, Rocourt C, Cheng W (2010) Selenoproteins and the aging brain. Mech Ageing Dev 131:253–260
Loef M, Schrauzer GN, Walach H (2011) Selenium and Alzheimer’s disease: a systematic review. J Alzheimers Dis 26:81–104
Stockler-Pinto MB, Mafra D, Farage NE et al (2010) Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition 26(11–12):1065–1069
IOM - Institute of Medicine (2002) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids Washington. The National Academy Press, Washington
Bodó ET, Stefánka Z, Ipolyi I et al (2003) Preparation, homogeneity and stability studies of a candidate LRM for Se speciation. Anal Bioanal Chem 377:32–38
da Silva EG, Mataveli LRV, Arruda MAZ (2013) Speciation analysis of selenium in plankton, Brazil nut and human urine samples by HPLC–ICP-MS. Talanta 110:53–57
Lemire M, Philibert A, Fillion M et al (2012) No evidence of selenosis from a selenium-rich diet in the Brazilian Amazon. Environ Int 40:128–136
Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400(1–3):115–141
Dodge HH, Wang CN, Chang CC et al (2011) Terminal decline and practice effects in older adults without dementia: the MoVIES project. Neurology 77(8):722–730
Cooper DB, Lacritz LH, Weiner MF et al (2004) Category fluency in mild cognitive impairment: reduced effect of practice in test-retest conditions. Alzheimer Dis Assoc Disord 18:120–122
Hodges JR, Erzinclioglu S, Patterson K (2006) Evolution of cognitive deficits and conversion to dementia in patients with mild cognitive impairment: a very-long-term follow-up study. Dement Geriatr Cogn Disord 21:380–391
Rinaldi P, Polidori MC, Metastasio A et al (2003) Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging 24:915–919
Pires LV, Silva AMDO, Alencar LL, Pimentel JA, Mancini-Filho J, Cozzolino SM (2011) Investigação da concentração de selênio e dos compostos fenólicos presentes na castanha-do-brasil (Bertholletia excelsa H.B.K.) e sua atividade antioxidante in vitro. Nutrire 36s:7s
Hurst R, Collings R, Harvey LJ et al (2014) EURRECA—Estimating Selenium Requirements for Deriving Dietary Reference Values. Crit Rev Food Sci Nutr 53(10):1077–1096
Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Bio Med 27(11/12):1173–1181
Serafini M, Bugianesi R, Maiani G et al (2003) Plasma antioxidants from chocolate. Nature 424:1013
McKay DL, Chen C-YO, Yeum K et al (2010) Chronic and acute effects of walnuts on antioxidant capacity and nutritional status in humans: a randomized, cross-over pilot study. Nutr J 9:21–31
Haddad EH, Gaban-Chong N, Oda K et al (2014) Effect of a walnut meal on postprandial oxidative stress and antioxidants in healthy individuals. Nutr J 13:4–12
Serafini M, Del Rio DD (2004) Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool? Redox Rep 9(3):145–152
Kolomvotsou AI, Rallidis LS, Mountzouris KC et al (2013) Adherence to Mediterranean diet and close dietetic supervision increase total dietary antioxidant intake and plasma antioxidant capacity in subjects with abdominal obesity. Eur J Nutr 52:37–48
Root MM, McGinn MC, Nieman DC et al (2012) Combined fruit and vegetable intake is correlated with improved inflammatory and oxidant status from a cross-sectional study in a community setting. Nutrients 4:29–41
Baldeiras I, Santana I, Proença MT et al (2008) Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer’s disease. J Alzheimer’s Dis 15:117–128
Padurariu M, Ciobica A, Hritcu L et al (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469:6–10
Torres LL, Quaglio NB, Souza GT et al (2011) Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis 26(1):59–68
Ryan E, Galvin K, O’Connor TP et al (2006) Fatty acid profile, tocopherol, squalene and phytosterol content of brazil, pecan, pine, pistachio and cashew nuts. Int J Food Sci Nutr 57(3/4):219–228
Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malondialdehyde and 4-hydroxynonenal. Methods Enzymol 186:407–413
Lu YF, Lu S (2002) Influence of dietary fat saturation on lipid peroxidation of serum and low density lipoprotein in rats. Nutr Res 22:463–472
Mel-S Haggag, Elsanhoty RM, Ramadan MF (2014) Impact of dietary oils and fats on lipid peroxidation in liver and blood of albino rats. Asian Pac J Trop Biomed 4(1):52–58
Charniot JC, Sutton A, Bonnefont-Rousselot D et al (2011) Manganese superoxide dismutase dimorphism relationship with severity and prognosis in cardiogenic shock due to dilated cardiomyopathy. Free Radic Res 45(4):379–388
Mutter J, Curth A, Naumann J et al (2010) Does inorganic mercury play a role in Alzheimer’s disease? A systematic review and an integrated molecular mechanism. Bouvé Fac Pub 22:357–374
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical standard
The research protocol was approved by the Research Ethics Committee of the Faculdade de Ciências Farmacêuticas da Universidade de São Paulo and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All participants gave their informed consent prior to their inclusion in the study.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rita Cardoso, B., Apolinário, D., da Silva Bandeira, V. et al. Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. Eur J Nutr 55, 107–116 (2016). https://doi.org/10.1007/s00394-014-0829-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00394-014-0829-2